If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x+3x^2=0
a = 3; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·3·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*3}=\frac{-14}{6} =-2+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*3}=\frac{0}{6} =0 $
| (4^4-4^3-23^2+12+36)y=0 | | 1.4x-2+2=2x-2+3.2 | | -5(s-7)=10 | | p=7+0.4/2.3 | | 4-10a=1.5 | | 2.3p-14.1=6.4-4 | | x−3/5=10 | | Y=x3x=-3 | | (3x+4)*x=300 | | A=3.142d | | 2x2-1=35 | | (3x-1/x^2-2x)=-1 | | $450=p(.05)(6) | | 34=6(v+4)-8v | | 2200=m16 | | |2x-1|=2 | | -(4-7x)=-6(-7-x) | | |8x-11|=-19 | | 12x−4=5x−28 | | y+.07y=22.90 | | 4x3/2-100=400 | | .33x+.50(x-4)=2 | | j4= 3 | | 3-4y=5 | | x+2=10+x | | (n)=-6-+(n-1)(1/5) | | 2(4w+2)=6(w+8) | | 8x+12=25 | | 21+28x=29+26x | | −4+3(x−1)=2(x+2)−x | | 5,1-x=8x+1,7 | | 3x+3=234 |